| Dame | Representation and Comparison of Whole Numbers | l loit | CHECKPOINT | | | |--|--|--------|------------|---|--| | Representation and Comparison of Whole Numbers | Unit | 1 | 2 | 3 | | | 3.2 | Number and operations. The student applies mathematical process standards to represent and compare whole numbers and understand relationships related to place value. | | | | | | Droo | NAGO (T I. (IX | Unit | CHECKPOINT | | | | | | |--------|---|------|------------|---|---|--|--|--| | PIOC | Process (Tools to Know) | | 1 | 2 | 3 | | | | | 3.1(A) | apply math in everyday situations ® | | | | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | | Con | tont | l loit | CHECKPOINT | | | |--------|---|--------|------------|---|---| | Con | tent | Unit | 1 | 2 | 3 | | Repre | sentation of Whole Numbers | | | | | | 3.2(A) | compose and decompose numbers up to 100,000 as a sum of so many ten thousands, so many thousands, so many hundreds, so many tens, and so many ones using objects, pictorial models, and numbers, including expanded notation as appropriate ® | | | | | | 3.2(B) | describe the mathematical relationships found in the base-10 place value system through the hundred thousands place | | | | | | Comp | arison of Whole Numbers | | | | | | 3.2(D) | compare and order whole numbers up to 100,000 and represent comparisons using the symbols >, <, or = $^{\textcircled{\$}}$ | | | | | | Round | ling of Whole Numbers | | | | | | 3.2(C) | represent a number on a number line as being between two consecutive multiples of 10; 100; 1,000; or 10,000 and use words to describe relative size of numbers in order to round whole numbers | | | | | | Droo | 1000 (W. 1 OL) | Unit | CHECKPOINT | | | | | |--------|--|------|------------|---|---|--|--| | PIOC | Process (Ways to Show) | | 1 | 2 | 3 | | | | 3.1(E) | create representations | | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | | Source: Texas Education Agency v. 4.8.20Page 1 of | >> Fra | ctions | Unit | CH | IECKPOII | NT | |----------|--|------|----|-----------------|----| | IIa | Cuons | Unit | 1 | 2 | 3 | | 3.3 | Number and operations. The student applies mathematical process standards to represent and explain fractional units. | | | | | | | Connected Knowledge and Skills 3.6, 3.7 | | | | | | | | | | | | | D | | | Cl | IECKPOII | VΤ | | Proc | ess (Tools to Know) | Unit | 1 | 2 | 3 | | 3.1(A) | apply math in everyday situations ® | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | | | | | | 0 | 4 | | Cl | IECKPOII | NΤ | | Cont | ent | Unit | 1 | 2 | 3 | | Repres | entation of Fractions | | | | | | 3.3(A) | represent fractions greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 using concrete objects and pictorial models, including strip diagrams and number lines | | | | | | 3.3(B) | determine the corresponding fraction greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number line | | | | | | 3.3(E) | solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with denominators of 2, 3, 4, 6, and 8 | | | | | | 3.7(A) | represent fractions of halves, fourths, and eighths as distances from zero on a number line | | | | | | | | | | | | | Unit Fr | actions | | | | | | 3.3(C) | explain that the unit fraction $1/b$ represents the quantity formed by one part of a whole that has been partitioned into b equal parts where b is a non-zero whole number | | | | | | 3.3(D) | compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as a sum of parts $1/b$ | | | | | | 3.6(E) | decompose two congruent two-dimensional figures into parts with equal areas and express the area of each part as a unit fraction of the whole and recognize that equal shares of identical wholes need not have the same shape | | | | | | | | | | | | | Equiva | lency of Fractions | | | | | | 3.3(F) | represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety of objects and pictorial models, including number lines | | | | | | 3.3(G) | explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model | | | | | | | | | | | | | Compa | rison of Fractions | | | | | | 3.3(H) | compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and | | | | | Source: Texas Education Agency **CHECKPOINT** | Droc | OCC (Mayo to Chay) | Unit | CHECKPOINT | | | | | |--------|--|------|------------|---|---|--|--| | PIUC | Process (Ways to Show) | | 1 | 2 | 3 | | | | 3.1(E) | create representations | | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | | >> TEKS clusters typically requiring additional time and focus in the curriculum \otimes = Long Strand concept Source: Texas Education Agency v. 4.8.20Page 3 of | ۸ ما ما : | Addition and Subtraction of Whole Numbers | Unit | CHECKPOINT | | | | |-----------|---|------|------------|---|---|--| | Addi | ition and Subtraction of Whole Numbers | Onit | 1 | 2 | 3 | | | 3.4 | Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. | | | | | | | 3.5 | Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. | | | | | | | Droo | NAGO (T I. (IX | Unit | CHECKPOINT | | | | | |--------|---|------|------------|---|---|--|--| | PIOC | rocess (Tools to Know) | | 1 | 2 | 3 | | | | 3.1(A) | apply math in everyday situations ® | | | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | Can | tont | Unit | CHECKPOINT | | | |--------|---|------|---|---|---| | Con | tent | Unit | 1 | 2 | 3 | | Estima | ation of Whole Numbers | | | | | | 3.4(B) | round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems $$ | | | | | | Additi | ion/Subtraction of Whole Numbers | | | | | | 3.4(A) | solve with fluency one-step and two-step problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction $^{\textcircled{3}}$ | | | | | | 3.5(A) | represent one- and two-step problems involving addition and subtraction of whole numbers to 1,000 using pictorial models, number lines, and equations | | | | | | Mone | у | | | | | | 3.4(C) | determine the value of a collection of coins and bills | | | | | | Nume | erical Patterns | | | | | | 3.5(E) | represent real-world relationships using number pairs in a table and verbal descriptions $^{\textcircled{8}}$ | | Data included in
"Multiplication and Divisi
of Whole Numbers" | | | | Dro | NOCC (IA) (O)) | Unit | CHECKPOINT | | | | |--------|--|------|------------|---|---|--| | PIOC | Cess (Ways to Show) | | 1 | 2 | 3 | | | 3.1(E) | create representations | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | Source: Texas Education Agency | ~~ N/II | tiplication and Division of Whale Numbers | Unit | CHECKPOINT | | | | |----------|---|------|------------|---|---|--| | >> iviui | tiplication and Division of Whole Numbers | Unit | 1 | 2 | 3 | | | 3.4 | Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. | | | | | | | 3.5 | Algebraic reasoning. The student applies mathematical process standards to analyze and create patterns and relationships. Connected Knowledge and Skills 3.6 | | | | | | | Droo | ACCO (Table to Know) | Unit | CHECKPOINT | | | | | |--------|---|------|------------|---|---|--|--| | PIOC | Process (Tools to Know) | | 1 | 2 | 3 | | | | | apply math in everyday situations ® | | | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | Con | tont | 11 | CI | HECKPOII | NT | |---------|--|------|----|---------------------------|----| | Con | tent | Unit | 1 | 2 | 3 | | Multi | plication of Whole Numbers | | | | | | 3.6(C) | determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row | | | ita included
Neasureme | | | 3.4(D) | determine the total number of objects when equally sized groups of objects are combined or arranged in arrays up to 10 by 10 | | | | | | 3.4(E) | represent multiplication facts by using a variety of approaches such as repeated addition, equal-sized groups, arrays, area models, equal jumps on a number line, and skip counting | | | | | | 3.4(F) | recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts | | | | | | 3.4(G) | use strategies and algorithms, including the standard algorithm, to multiply a two-digit number by a one-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties | | | | | | 3.5(C) | describe a multiplication expression as a comparison such as 3 x 24 represents 3 times as much as 24 | | | | | | 3.5(D) | determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product | | | | | | Divisio | on of Whole Numbers | | | | | | 3.4(H) | determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally | | | | | | 3.4(I) | determine if a number is even or odd using divisibility rules | | | | | | 3.4(J) | determine a quotient using the relationship between multiplication and division | | | | | | Nume | erical Patterns | | | | | | 3.5(E) | represent real-world relationships using number pairs in a table and verbal descriptions | | | | | | Multi | plication and Division of Whole Numbers | | | | | | 3.4(K) | solve one-step and two-step problems involving multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models, and equal groups; properties of operations; or recall of facts | | | | | | 3.5(B) | represent and solve one- and two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations | | | | | Source: Texas Education Agency | Droc | Drococc (Maye to Chay) | | CHECKPOINT | | | | |--------|--|------|------------|---|---|--| | PIOC | eess (Ways to Show) | Unit | 1 | 2 | 3 | | | 3.1(E) | create representations | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | >> TEKS clusters typically requiring additional time and focus in the curriculum \otimes = Long Strand concept Source: Texas Education Agency v. 4.8.20Page 6 of | C | Geometry | Unit | CHECKPOINT | | | | |-----|---|------|------------|---|---|--| | Geo | metry | | 1 | 2 | 3 | | | 3.6 | Geometry and measurement. The student applies mathematical process standards to analyze attributes of two-dimensional geometric figures to develop generalizations about their properties. | | | | | | | Droc | NOCC (Table to Know) | Unit | CHECKPOINT | | | | | |--------|---|------|------------|---|---|--|--| | PIOC | Cess (Tools to Know) | | 1 | 2 | 3 | | | | 3.1(A) | apply math in everyday situations | | | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | Con | ontent | | CHECKPOINT | | | | |--------|---|------|------------|---|---|--| | Con | tent | Unit | 1 | 2 | 3 | | | Two-D | Dimensional/Three-Dimensional | | | | | | | 3.6(A) | classify and sort two- and three-dimensional figures, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language $^{\textcircled{3}}$ | | | | | | | 3.6(B) | use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories $^{\textcircled{\$}}$ | | | | | | | Process (W. J. Ol.) | Hait | CHECKPOINT | | | | |---|------|------------|---|---|--| | Process (Ways to Show) | Unit | 1 | 2 | 3 | | | 3.1(E) create representations | | | | | | | 3.1(F) analyze information © connected 3.1(D), 3.1(G) | | | | | | 9 = Long Strand concept Source: Texas Education Agency v. 4.8.20Page 7 of | >> Magazinamant | Unit | CHECKPOINT | | | | |-----------------|--|------------|---|---|--| | >> Measurement | | 1 | 2 | 3 | | | 3.7 | Geometry and measurement. The student applies mathematical process | | | | | | | standards to select appropriate units, strategies, and tools to solve problems | | | | | | | involving customary and metric measurement. | | | | | | | Connected Knowledge and Skills 3.6 | | | | | | Dra | COCC (Table to Know) | Unit | CHECKPOINT | | | | | |-------|---|------|------------|---|---|--|--| | PIC | DCESS (Tools to Know) | | 1 | 2 | 3 | | | | 3.1(A | | | | | | | | | 3.1(B |) use problem-solving models © connected 3.1(C) | | | | | | | | Con | tont | Unit | CHECKPOINT | | | | |--------|--|-------|------------|---|---|--| | COII | | Oilit | 1 | 2 | 3 | | | Area | | | | | | | | 3.6(C) | determine the area of rectangles with whole number side lengths in problems using multiplication related to the number of rows times the number of unit squares in each row $©$ | | | | | | | 3.6(D) | decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive property of area | | | | | | | Perim | eter | | | | | | | 3.7(B) | determine the perimeter of a polygon or a missing length when given perimeter and remaining side lengths in problems $^{\circledR}$ | | | | | | | Time | | | | | | | | 3.7(C) | determine the solutions to problems involving addition and subtraction of time intervals in minutes using pictorial models or tools such as a 15-minute event plus a 30-minute event equals 45 minutes | | | | | | | Liquid | Capacity/Weight | | | | | | | 3.7(D) | determine when it is appropriate to use measurements of liquid volume (capacity) or weight | | | | | | | 3.7(E) | determine liquid volume (capacity) or weight using appropriate units and tools | | | | | | | Droc | 1000 (Men 4- Ohan) | l loit | CHECKPOINT | | | | | |--------|--|--------|------------|---|---|--|--| | PIOC | eess (Ways to Show) | Unit | 1 | 2 | 3 | | | | 3.1(E) | create representations | | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | | >> TEKS clusters typically requiring additional time and focus in the curriculum | Date | Data Analysis | Unit | CHECKPOINT | | | | |------|--|------|------------|---|---|--| | Data | a Analysis | | 1 | 2 | 3 | | | 3.8 | Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. | | | | | | | Droc | NOCC (Table to Know) | Unit | CHECKPOINT | | | | | |--------|---|------|------------|---|---|--|--| | PIOC | Cess (Tools to Know) | | 1 | 2 | 3 | | | | 3.1(A) | apply math in everyday situations | | | | | | | | 3.1(B) | use problem-solving models © connected 3.1(C) | | | | | | | | Con | tont | Unit | CHECKPOINT | | | | | | | |--------|---|------|------------|---|---|--|--|--|--| | Con | Content | | 1 | 2 | 3 | | | | | | Repre | sentation of Data | | | | | | | | | | 3.8(A) | summarize a data set with multiple categories using a frequency table, dot plot, pictograph, or bar graph with scaled intervals | | | | | | | | | | Interp | Interpretation of Data | | | | | | | | | | 3.8(B) | solve one- and two-step problems using categorical data represented with a frequency table, dot plot, pictograph, or bar graph with scaled intervals $^{\textcircled{3}}$ | | | | | | | | | | | Social Studies Integration | | | | | | | | | | Process (W. J. Cl.) | | Unit | CHECKPOINT | | | | |----------------------|-------------------------|-------------------------|------------|---|---|---| | PIOC | Process (Ways to Show) | | Unit | 1 | 2 | 3 | | 3.1(E) | create representations | | | | | | | 3.1(F) | analyze information ® c | onnected 3.1(D), 3.1(G) | | | | | \otimes = Long Strand concept Source: Texas Education Agency v. 4.8.20Page 9 of use problem-solving models [®] 3.1(B) | Devenuel Financial Litareau | | Unit | CHECKPOINT | | | | |-----------------------------|---|------|------------|----------|----|--| | Pers | Personal Financial Literacy | | 1 | 2 | 3 | | | 3.9 | Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. | | | | | | | Dro | 00000 (Table to 16 and) | Unit | Cl | HECKPOII | NT | | | PIC | Process (Tools to Know) | | 1 | 2 | 3 | | | 3.1(A) |) apply math in everyday situations ® | | | | | | connected 3.1(C) | Content | | Heit | CHECKPOINT | | | | | |-------------------------------|---|------|------------|---|---|--|--| | Con | tent | Unit | 1 | 2 | 3 | | | | Earning, Spending, and Saving | | | | | | | | | 3.9(E) | list reasons to save and explain the benefit of a savings plan, including for college | | | | | | | | 3.9(C) | identify the costs and benefits of planned and unplanned spending decisions | | | | | | | | 3.9(F) | identify decisions involving income, spending, saving credit and charitable giving | | | | | | | | | Social Studies Integration 3.5(A) identify ways of earning, spending, saving, and donating money 3.5(B) create a simple budget that allocates money for spending and saving | | , | , | , | | | | Borrowing | | | |---|--|--| | 3.9(D) explain that credit is used when wants or needs exceed the ability to pay and that it is the borrower's responsibility to pay it back to the lender, usually with interest | | | | Economics | | | | | | |-----------|--------|---|--|--|--| | | 3.9(A) | explain the connection between human capital/labor and income | | | | | | 3.9(B) | describe the relationship between the availability or scarcity of resources and how that impacts cost | | | | #### **Social Studies Integration** 3.6(A) explain how supply and demand affect the price of a good or service 3.6(B) define and identify examples of scarcity 3.6(C) explain how the cost of production and selling price affect profits | Process (M. J. Ol.) | | Unit | CHECKPOINT | | | | |----------------------|--|------|------------|---|---|--| | PIOC | ess (Ways to Show) | Onit | 1 | 2 | 3 | | | 3.1(E) | create representations | | | | | | | 3.1(F) | analyze information © connected 3.1(D), 3.1(G) | | | | | | Source: Texas Education Agency | | DDOCESS STANDARDS, MATHEMATICAL DROCESS STANDARDS | | Unit | CHECKPOINT | | | | |-----|--|------------------|------|------------|---|---|--| | | PROCESS STANDARDS: MATHEMATICAL PROCESS STANDARDS | | | 1 | 2 | 3 | | | 3.1 | 3.1 The student uses mathematical processes to acquire and demonstrate | Tools to
Know | | | | | | | | mathematical understanding. | Ways to
Show | | | | | | | | TOOLS TO WORK | | CHECKPOINT | | | | |--------|--|------|------------|---|---|--| | | TOOLS TO KNOW | Unit | 1 | 2 | 3 | | | 3.1(A) | apply mathematics to problems arising in everyday life, society, and the workplace $^{\circledR}$ | | | | | | | 3.1(B) | use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution $^{\textcircled{3}}$ | | | | | | | 3.1(C) | select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems | | | | | | | WAYS TO SHOW | | l lmit | Cŀ | IECKPOII | NT | |--------------|--|--------|----|----------|----| | | WATS TO SHOW | Unit | | | | | 3.1(D) | communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate | | | | | | 3.1(E) | create and use representations to organize, record, and communicate mathematical ideas | | | | | | 3.1(F) | analyze mathematical relationships to connect and communicate mathematical ideas $^{\textcircled{\$}}$ | | | | | | 3.1(G) | display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication | | | | | Source: Texas Education Agency 9 = Long Strand concept v. 4.8.20Page 11 of 9 = Long Strand concept Source: Texas Education Agency v. 4.8.20Page 12 of